
Proving the correctness of algebraically specified

software: Modularity and Observability issues∗

Gilles Bernot & Michel Bidoit

LIENS – C.N.R.S. U.R.A. 1327

Ecole Normale Supérieure

45, Rue d’Ulm – 75230 PARIS Cedex 05 France

E-mail: [bernot, bidoit] @dmi.ens.fr (Internet), or @FRULM63.BITNET (Earn)

Abstract

We investigate how far modularity and observability issues can contribute to a better
understanding of software correctness. We detail the impact of modularity on the semantics
of algebraic specifications and we show that, with the stratified loose semantics, software
correctness can be established on a module per module basis. We discuss observability issues
and we introduce an observational semantics where sort observation is refined by specifying
that some operations do not allow observations. Then the stratified loose approach and our
observational semantics are integrated together. As a result, we obtain a framework (mod-
ular observational specifications) where the definition of software correctness is adequate,
i.e. fits with actual software correctness.

1 Introduction

A fundamental aim of formal specifications is to provide a rigorous basis to establish software
correctness. Indeed, it is well-known that proving the correctness of some piece of software with-
out a formal reference document makes no sense.1 Algebraic specifications are widely advocated
as being one of the most promising formal specification techniques. However, to be provided
with some algebraic specification is not sufficient per se. A precise (and adequate) definition
of what does mean the correctness of some piece of software w.r.t. its algebraic specification
is mandatory. This crucial prerequisite must be first fulfilled before one can develop relevant
verification methods, and try to mechanize them.

Hence the adequacy of the chosen definition of correctness has a great practical impact,
and we should therefore define software correctness in conformity with actual needs. In the
framework of algebraic specifications, straightforward definitions of correctness turn out to be
oversimplified: most programs that must be considered as being correct (from a practical point
of view) are rejected. Indeed, when the program behaves correctly, there can still exist some
differences between the properties stated by the specification and those verified by the program.
Here, to behave correctly means that these differences are not “observable”. Consequently, more
elaborated definitions of correctness, taking observability into account, should be considered.

∗To appear in Proc. of the AMAST Conference, 1991.
1Who would attempt to prove a theorem without providing its statement?

1

As soon as real-sized systems are involved, both the specification and the software become
large and complex. Hence the validation process becomes itself an unmanageable task. At the
programming level, this problem is handled by using modular programming languages. At the
specification level, algebraic specifications are split into smaller units by means of specification-
building primitives. Thus, with respect to software correctness, what is needed is a framework
such that the various units of the specification can be related to the various modules of the
software, and such that the gobal correctness of the software can be established from the local
correctness of each software module w.r.t. its specification module.

Thus, our claim is that modularity and observability issues are fundamental to define a
practicable notion of software correctness. In this paper, we will detail various aspects related
to modularity, observability, and their interactions with software correctness. We introduce
a semantic framework for modular observational algebraic specifications that leads to a more
adequate definition of software correctness. This is only a first step towards putting software
correctness proofs in practice, but we believe that practicable proof methods can be developed
on top of our approach.

We assume that the reader is familiar with algebraic specifications [20, 14] and with the
elementary definitions of category theory [25]. An algebraic specification SP is a tuple (S,Σ,Ax)
where (S,Σ) is a signature and Ax is a finite set of Σ-formulas. We denote by Mod(Σ) the
category of all Σ-algebras, and by Mod(SP) the full sub-category of all Σ-algebras for which Ax
is satisfied. We will also use the following technical definition:

Definition (Minimal models):
Given a specification SP , a model M ∈ Mod(SP) is called minimal if, for all A ∈
Mod(SP), if there exists a morphism µ : A −→ M , then there exists a unique
morphism ν : M −→ A.
Note that if Mod(SP) has an initial model, then it is the unique minimal model (up
to isomorphism).

2 Modularity and software correctness

In this section we shall focus on the links that can (should) be established between a modular
specification and the corresponding software, implemented using a modular programming lan-
guage (such as e.g. Ada, Clu or Standard ML). The problem considered is to define an algebraic
semantic framework such that the various pieces of the specification can be related to the various
modules of the implementation and such that the global correctness of the implementation can
be established from the local correctness of each software module w.r.t. its specification module.

To better understand why and how far both the modularity of the specification and the
modularity of the software interact together as well as the need for a new approach to the
semantics of algebraic specifications, we shall first briefly recall the main underlying paradigm
of the loose approach.

A specification is supposed to describe a future or existing system in such a way that the
properties of the system (what the system does) are expressed, and the implementation details
(how it is done) are omitted. Thus a specification language aims at describing classes of cor-
rect (w.r.t. the intended purposes) implementations (realizations). In contrast a programming
language aims at describing specific implementations (realizations). In a loose framework, the

2

semantics of some specification SP is a class M of (non-isomorphic) algebras. Given some im-
plementation (program) P , its correctness w.r.t. the specification SP can then be established
by relating the program P with one of the algebras of the class M. Roughly speaking, the
program P will be correct w.r.t. the specification SP if and only if the algebra defined by P
belongs to the class M.2

Let us now reexamine the above picture in a modular setting. At one hand we have a
modular specification SP made of some specification modules ∆SP 1, ∆SP 2, . . . related to
each other by some specification-building primitives. On the other hand we have a modular
software made of some program modules ∆P1, ∆P2, . . . Assume moreover that the software
structure reflects the specification structure. The problem we have to solve is the following one:

1. To define a notion of correctness such that “the program module ∆Pi is correct w.r.t. the
specification module ∆SP i” is given a precise meaning.

2. To ensure that the local correctness of each program module w.r.t. its specification module
implies the global correctness of the whole software w.r.t. the whole specification.

3. To carefully study how some basic requirements about the modular development of mod-
ular software, as well as their reusability, interact with the design of the semantics of
modular specifications.

It turns out that the main difficulties raised by this goal are twofold:

1. Providing a (loose) semantics to specification modules is not so easy, since from a math-
ematical point of view (heterogeneous) algebras do not have a modular structure.

2. If our intuition and needs about modular software development and the reuse of software
modules can be easily figured out, this turns out to be a more difficult task at the level
of algebraic semantics.

In the following section we shall try to provide some insight into the solution we propose and
into the main ideas underlying what we call the “stratified loose semantics”.

3 The stratified loose approach

For sake of simplicity, we shall focus on the most commonly used specification-building primi-
tive, namely the enrichment one. Moreover, we shall assume that the modular specification SP 2

we consider is made of one specification module ∆SP that enrich only one modular specification
SP 1.

According to the loose approach, the semantics of the specification SP 1 will be defined as
some class M1 of Σ1-algebras (where Σ1 denotes the signature associated to SP 1). Similar
notations hold for SP 2. Since we assume that SP 2 is defined as an enrichment of SP 1 by the
specification module ∆SP , we have Σ2 = Σ1 ⊕ ∆Σ, hence Σ1 ⊆ Σ2. Let U denote the usual

2As we will see in Section 4, this is an oversimplified picture. However, in the sequel we shall adopt this
oversimplified understanding of software correctness, since it will be sufficient to study the impact of modularity.
Note also that our picture does not preclude more refined views about implementations, such as the abstract
implementation of one specification by another (more concrete) one [4, 13], or the stepwise refinement and
transformation of a specification into a piece of software [2]. This indeed is the reason why whe shall speak of
“realizations” instead of “implementations”.

3

forgetful functor from Σ2-algebras to Σ1-algebras.

With the help of this simple context, our intuition and needs w.r.t. the modular development
of modular software can be summarized as follows [10]:

1. If some piece of software fulfills (i.e. is a correct realization of) the “large” specification
SP 2, then it must be reusable for simpler purposes, i.e. it must also provide a correct
realization of the sub-specification SP 1.

2. Any piece of software that fulfills (i.e. that is a correct realization of) the sub-specification
SP 1 should be reusable as the basis of some correct realization of the larger specification
SP 2. In other words, it should be possible to implement the sub-specification SP 1 with-
out taking care of the (future or existing) enrichments of this specification (e.g. by the
specification module ∆SP).

3. It should be possible to implement the specification module ∆SP without knowing which
specific realization of the sub-specification SP 1 has been (or will be) chosen. Thus, the
various specification modules should be implementable independently of each other, may
be simultaneously by separate programmer teams. Moreover, exchanging some correct
realization (say P1) of the specification SP 1 with another correct one (say P ′

1) should still
produce a correct realization of the whole specification SP 2, without modification of the
realization ∆P of the specification module ∆SP .

The first two requirements can be easily achieved by embedding some appropriate hierarchi-
cal constraints into the semantics of the enrichment specification-building primitive. Roughly
speaking, it is sufficient to require the following property:

Either M2 = ∅ (in that case the specification module ∆SP will be said to be hierar-
chically inconsistent) or U(M2) = M1.

The third requirement, however, cannot be achieved without providing a suitable (loose) se-
mantics to specification modules. There is no way to take this requirement into account by
only looking at the semantics of specifications. However, in an initial approach to algebraic
semantics (cf. e.g. [14, 12]), an initial semantics can be provided for the specification module
∆SP by considering the free synthesis functor F∆ (left adjoint to the forgetful functor U). In
our case, nothing ensures that this free synthesis functor F∆ exists, since we have made no as-
sumption about the axioms of the specification. Moreover, we are looking for a loose semantics
of specification modules, in order to reflect all correct implementation choices of these modules.
The following definition provides the solution we are looking for by embedding the ideas of the
initial approach into the loose one:

Definition (Stratified loose semantics):
Given a modular specification SP 2 defined as the enrichment of some modular spec-
ification SP 1 by a specification module ∆SP , the semantics of the specification
module ∆SP and of the modular specification SP 2 are defined as follows:

Basic case:
If the sub-specification SP 1 is empty (hence the specification SP 2 is reduced to
the specification module ∆SP), then:

• The semantics of the specification SP 2 is by definition the class of all
minimal models of Mod(SP 2), if any; if Mod(SP 2) has no minimal model,
then SP 2 is said to be inconsistent.

4

• The semantics of the specification module ∆SP is defined as being the class
of all functors F from the category 1 to Mod(SP 2), which map the object
of 1 to a minimal model of Mod(SP 2).

3

General case:
Let us denote by M1 the class of models associated to the modular specification
SP 1, according to the current definition.

• The semantics of the specification module ∆SP is defined as being the class
F2

1 of all the mappings F such that:

1. F is a (total) functor from M1 to Mod(SP 2).

2. F is a right inverse of the forgetful functor U , i.e.:
∀M1 ∈ M1 : U(F(M1)) = M1.

If the class F2
1 is empty, then the enrichment is said to be hierarchically

inconsistent.

• The semantics of the whole specification SP 2 is defined as being the class
of all the models image by the functors F of the models of M1:
M2 =

⋃

F∈F2
1

F(M1).

The class M2 of the models of the specification SP 2 is said to be stratified by the
functors F .

Some comments are necessary to better understand the previous definition:

• Our semantics is a true loose semantics, since it associates a class of (non-isomorphic) func-
tors (resp. algebras) to a given specification module (resp. to a given specification). How-
ever, our semantics can also be considered as a generalization of the initial approach: if we
restrict to positive conditional equations, then the free synthesis functor from Mod(SP 1)
to Mod(SP 2) exists; under suitable additional assumptions, this functor is just one specific
functor in the class F2

1 .

• It is important to note that with our loose stratified semantics, the hierarchical constraints
mentioned above are satisfied. More precisely, as soon as the specification module ∆SP
is hierarchically consistent, then we have U(M2) = M1. As a consequence, both the
so-called “no junk” and “no confusion” properties are guaranteed. In other words, we
know that the “old” carrier sets (i.e. the carrier sets of sorts defined in SP 1) will contain
no “new” value, and that “old” values who may be distinct before (in at least one model
of SP 1) should not be forced to be equal by the new specification module ∆SP .

• We have chosen a pseudo initial semantics (minimal models) for the basic case (a modular
specification reduced to one specification module) in order to exclude trivial models (a
well-known problematic feature of loose semantics). This remark does not only apply for
basic specifications, but for all modular specifications in general, since this “minimal”
semantics for the basic case, combined with the hierarchical constraints induced by the
stratified loose semantics for the general case, will exclude trivial carrier sets for all sorts.4

3As usual, the category 1 denotes the category containing only one object, which can be interpreted as a
Σ1-algebra for an empty signature Σ1.

4More precisely, if we consider a sort s and if we assume that there exists some operation (or some composition
of operations) which has s in its domain and a sort s

′ defined in a basic specification module as its codomain,
then the “minimal” semantics of the basic specification module will prevent from undesired confusion of values
in the carrier set of s . . .

5

Moreover, such a “minimal” semantics for basic specification modules turns out to be
quite adequate to specify enumerated sets (such as e.g. booleans, characters, etc.).

• So far, we have stressed that the independent implementability of each specification mod-
ule is a crucial aspect of modularity. Now, we would like to stress another equally im-
portant aspect of modularity, namely the specification style point of view. Indeed, when
writing some specification module, a natural implicit assumption made by the specifier
is that the semantics of the imported sub-specifications is preserved (i.e. this semantics
is established once for all). By the way, this is exactly what is guaranteed by our strat-
ified loose semantics: as explained aboved, the hierarchical constraints associated to our
semantics of modularity automatically restrict the class of models of the specification
SP 2 to the models that preserve the enriched sub-specifications. This contrasts with a
more conventional approach, where the specifier should explicitly design the axioms of the
specification unit in order to guarantee the so-called no junk and no confusion properties,
i.e. to guarantee the persistency of the enrichment (and this often results in unnecessary
over-specification). From our point of view, there is therefore a fundamental distinction
between what we call structured specifications, for which the no junk and no confusion
properties are explicitly ensured by appropriate axioms, and modular specifications,
for which similar properties are implicitly ensured by an appropriate semantics. Fur-
thermore, it is clear that the hierarchical structure of a modular specification has a deep
impact on its modular semantics, while this is not the case for (persistent) structured
specifications, whose semantics is not altered by flattening.

• The extension of the definition above to the case where the specification module ∆SP
enriches more than one specification as well as its extension to other specification-building
primitives (such as e.g. parameterization) do not raise difficult problems and is described
in [9].

• It is also important to note that our definition is independent of the underlying insti-
tution [19]. Thus our stratified loose approach can be used to define the semantics of
any modular algebraic specification language [33]. Moreover, our stratified loose approach
can even be used in a more general framework than institutions, for instance in a frame-
work where the Satisfaction Condition [19] does not hold. This is obvious since, as far
as the stratified loose semantics is concerned, the existence of forgetful functors (from
Σ2-algebras to Σ1-algebras, with Σ1 ⊆ Σ2) is the only requirement. Indeed, this very
broad scope of the stratified loose approach will be clearly demonstrated in Section 6.

We must now point out how far our stratified loose semantics solves the problem stated in
the previous section. A program module ∆P will be said to be correct w.r.t. some specification
module ∆SP if and only if ∆P “defines” a functor belonging to the semantics of the specifica-
tion module. From our definition, it is then obvious that the “composition” of correct software
modules (i.e. the software obtained by linking together these software modules) is always a
correct realization of the whole specification. Thus, the main significance of the stratified loose
framework outlined in this section is that it is possible to specify and develop software in a
modular way, and that the correctness of the implementation should only be established on a
module per module basis. A formal theory of software reusability, built on top of our stratified
loose semantics, is described in [17].

Note that the definition above is given in a very general way: we have considered all algebras,
finitely generated or not. It is obviously very easy to refine our definition of the stratified loose

6

semantics in order to consider finitely generated algebras only. Indeed, we prefer to introduce
a more powerful constraint, namely the restriction to algebras finitely generated with respect
to a distinguished subset of the signature called the set of generators.5 Such a constraint
will guarantee that for any model, all values will be denotable as some composition of these
generators. From a theoretical point of view, an important consequence of this constraint is
that structural induction restricted to the generators is a correct proof principle. This constraint
has many practical consequences too, since reasoning by means of generators helps writing the
axioms in a structured way [7]. Moreover, it can be used to avoid to overspecify some operations,
as demonstrated in the following two examples:

Specifying a remove operation on sets :
To specify a remove operation on sets, the following axioms are sufficient:

x ∈ remove(x, S) = false
x6=y =⇒ y ∈ remove(x, S) = y ∈ S

Considering only finitely generated models w.r.t. the generators will ensure that, for any
set S , remove(S) is actually a set, reachable from the empty set by some successive
insertions, and not a “junk” set.

Specifying the Euclidean division :
Similarly, to specify the division of natural numbers, the following axioms are sufficient:

m 6=0 =⇒ 0 ≤ [n − ((n div m) ∗ m)] = true
m 6=0 =⇒ m ≤ [n − ((n div m) ∗ m)] = false

These axioms characterize (n div m) among all natural numbers finitely generated w.r.t.
0 and succ (Euclid). However, without the constraint, there are models (e.g. the initial
model) where (n div m) is not reached by some succi(0) ; it is only an unreachable value
such that the (unreachable) remainder [n− ((n div m) ∗m)] returns the specified boolean
values when compared with 0 and m .

In Pluss [9], the distinguished subset of generators is specified apart from the other operations
of the signature and is introduced by the keyword generated by.

A crucial issue is obviously to know when some given specification module is hierarchically
consistent . From a general point of view, it is well-known that this is an undecidable problem.
However, we would like to point out that, in our stratified loose framework, there are two
distinct grounds for hierarchical inconsistency:

• As usual, hierarchical inconsistency may result from the axioms introduced by the speci-
fication module.

• Moreover, adding “new” observations on “old” sorts will in general result in an
inconsistent specification module ∆SP . This is due to the fact that, with these “new”
observations, it may be possible to distinguish “old” values (i.e. to prevent them from
being equal), while these “old” values could have been equal in some model M1 of SP 1.
Hence there is no total mapping from M1 to Mod(SP 2), since this model M1 of SP 1

5We do not detail here the refined version of the stratified loose semantics according to this additional con-
straint, since the modifications to be introduced are rather obvious [9].

7

cannot be extended to a model of SP 2. A typical example of such a situation is when a
“new observing operation” on an “old” sort is defined in ∆SP : for instance, if we assume
that SP 1 specifies natural numbers (with M1 ⊇ {N, Z/nZ}), specifying a “≤” operation
in ∆SP will result in an hierarchically inconsistent specification module. Thus, these
“observing operations” should rather have been defined in the appropriate specification
module, i.e. in the specification module where the “observed” sort is defined.

Note that the latter ground for hierarchical inconsistency should not be understood as a re-
strictive side-effect of the stratified loose semantics, but rather as a fruitful guide in structuring
large specifications into specification modules. More precisely, a specification module should be
considered as a unit of specification where a sort of interest, its generators, its observers, and
other appropriate operations are simultaneously defined.

As a consequence of the “hierarchical constraints” required by modularity, it is necessary
to state a careful distinction between implementable and not yet implementable specification
modules:

• Implementable specification modules will have a semantics defined accordingly to the strat-
ified loose framework, in order to allow for a modular software development and verifi-
cation process.

• Not yet implementable specification modules will have a more flexible semantics, in order
to allow for a specification development process by stepwise refinements [8].

Such a distinction is introduced in the Pluss algebraic specification language [9, 11], the se-
mantics of which is defined following the stratified loose approach. Note that this distinction
contrasts with all other specification languages developed following either the initial or the loose
approach, such as ASL [37, 1], OBJ2 [15] and LARCH [21], where there is only a distinction
between various enrichment primitives.

4 Observability and software correctness

The paradigm used in Section 2 to introduce the stratified loose approach was obviously an
oversimplified understanding of software correctness. Indeed, if software correctness (w.r.t. its
formal specification) is defined in such a way, then most realizations that we would like to
consider as being correct (from a practical point of view) turn out to be incorrect ones. This is
illustrated by the SET specification given in Fig. 1.

If we consider a standard realization of SET by e.g. lists, we do not obtain a correct realiza-
tion: this is due to the axioms expressing the commutativity of the insertion operation, which
do not hold for lists. However, if we notice that indeed we are only interested in the result
of some computations (e.g. membership), then it is clear that our realization of SET by lists
“behaves” correctly. Thus, an intuitively correct realization of an algebraic specification SP
may correspond to an algebra which is not in Mod(SP). This leads to a refined understanding
of software correctness: a program P should be considered as being correct w.r.t. its specifi-
cation SP if and only if the algebra defined by P is an “observationally correct realization” of
SP . In other words, the differences between the specification and the software should not be
“observable”, w.r.t. some appropriate notion of “observability”.

8

spec : SET ;
use : NAT, BOOL ;

sort : Set ;
generated by :

∅ : −→ Set ;
ins: Nat Set −→ Set ;

operations :
∈ : Nat Set −→ Bool ;

del : Nat Set −→ Set ;
axioms :

ins(x, ins(x, S)) = ins(x, S) ;
ins(x, ins(y, S)) = ins(y, ins(x, S)) ;
del(x, ∅) = ∅ ;
del(x, ins(x, S)) = del(x, S) ;
x 6= y =⇒ del(x, ins(y, S)) = ins(y, del(x, S)) ;
x ∈ ∅ = false ;
x ∈ ins(x, S) = true ;
x 6= y =⇒ x ∈ ins(y, S) = x ∈ S ;
where : S : Set ; x, y : Nat ;

end SET .

Figure 1: A specification of sets of natural numbers

The problem is now to specify the “observations” to be associated to some specification,
and to define the semantics of such “observations” in order to obtain a framework that will
capture the essence of software correctness. Up to now, various notions of observability have
been introduced, involving observation techniques based on sorts [18], [36], [24], [16], [30], [26],
[34], [29], [28], on operations [35], on terms [32], [23] or on formulas [31], [32]. Assuming that we
have chosen some observation technique, we can specify, using this technique, that some parts
of an algebraic specification are observable. An observational specification is thus obtained by
adding a specification of the objects to be observed to a usual algebraic specification. The
next step is to define the semantics of these observational specifications, in such a way that our
paradigm “the class of the models of some specification represents all its acceptable realizations”
is correctly reflected. As explained above, some correct software could correspond to an algebra
which does not satisfy all the axioms of the specification, provided that the differences between
the properties of the algebra and the properties required by the specification are not observable.

There are mainly two possible ways to define the semantics of observational specifications.
We can extend the class of the models of the specification SP by including some additional
algebras which are “behaviourally equivalent” (w.r.t. the specified observations) to a model
of Mod(SP) (extension by behavioural equivalence, see [31], [32], [23]). In the sequel such an
approach will be referred to as behavioural semantics. We can also directly relax the sat-
isfaction relation, hence redefine Mod(SP) (extension by relaxing the satisfaction relation, see
[30], [29], [35]). We will call these approaches observational semantics.

For a comparative study of these various ways of defining the semantics of observational
specifications, and of the relative expressive power of the various observation techniques men-

9

tioned above, see [5]. In the sequel we will provide a short insight into the behavioural approach,
and we will point out some of its limitations. In the next section we will describe a semantics
based on the observational approach.

To define a behavioural semantics we first need to define an appropriate equivalence rela-
tion ≡Obs on the class Mod(Σ) of all Σ-algebras, also called behavioural equivalence of algebras
w.r.t. the specified observations Obs [31, 32]. The definition of ≡Obs depends on the obser-
vational technique in use (i.e. whether we observe sorts, operations, terms or formulas [5]).
Assuming that we observe a set of formulas Φ (which is the most general case), the behavioural
equivalence ≡Φ and the associated behavioural semantics are defined as follows:

Definition (Behavioural semantics) [32]:
Given a set of observed formulas Φ, the behavioural equivalence w.r.t. Φ, written
≡Φ, is an equivalence relation on Mod(Σ) defined by:

A ≡Φ B if and only if ∀ϕ ∈ Φ A |= ϕ ⇔ B |= ϕ

In other words, two Σ-algebras A and B are behaviourally equivalent w.r.t. a set of
observable formulas Φ, if and only if A and B satisfy the same observable formulas.
The class of the behavioural models of some specification SP (with observed formulas
Φ), written Beh(SP ,Φ), is defined by:

Beh(SP ,Φ) = {B ∈ Mod(Σ) | ∃ A ∈ Mod(SP) s.t. B ≡Φ A}

Now we would like to point out some limitations intrinsic to behavioural semantics. It
turns out that in some cases, behavioural semantics is not powerful enough to fully capture our
requirements w.r.t. software correctness: in these cases, we know of some realization that we
would like to consider as being correct, but unfortunately this realization cannot be shown to
be behaviourally equivalent to any of the (usual) models of the specification at hand. A typical
example of such cases arises when Mod(SP) is empty (i.e. when the specification is inconsistent
in the usual sense). For instance, let us consider a variant of our SET specification as described
in Fig. 2.

What we really need for this example is to observe the following set of terms:

W = {x ∈ S} ∪ {t ∈ TLIST-signature(X) | t is of sort Nat or Bool }

In other words, we observe membership and some LIST terms but we do not observe those
LIST terms where enum occurs.6

Obviously, the specification SET-WITH-ENUM is inconsistent (i.e. Mod(SP) = ∅). Con-
sequently its class of behavioural models is empty as well, whatever the observations specified
and the behavioural equivalence used. Nevertheless, a realization which represents sets by non
redundant lists, ins being realized by cons (when the element to be inserted is not already in
the list) and enum being a coercion, should clearly be considered as a correct one.

The point here is that in a behavioural approach, the existence of behavioural models de-
pends on the existence of usual models. Indeed, behavioural semantics still rely on the usual

6Note that for this example we observe terms and not formulas. However, as shown in [5], behavioural
equivalence can be defined in a similar way as above. Moreover, whatever the definition of ≡Obs is, our counter-
example remains.

10

spec : SET-WITH-ENUM ;
use : LIST, NAT, BOOL ;

sort : Set ;
generated by :

∅ : −→ Set ;
ins: Nat Set −→ Set ;

operations :
∈ : Nat Set −→ Bool ;

del : Nat Set −→ Set ;
enum : Set −→ List ;

axioms :
ins(x, ins(x, S)) = ins(x, S) ;
ins(x, ins(y, S)) = ins(y, ins(x, S)) ;
del(x, ∅) = ∅ ;
del(x, ins(x, S)) = del(x, S) ;
x 6= y =⇒ del(x, ins(y, S)) = ins(y, del(x, S)) ;
x ∈ ∅ = false ;
x ∈ ins(x, S) = true ;
x 6= y =⇒ x ∈ ins(y, S) = x ∈ S ;
enum(∅) = nil ;
x ∈ S = true =⇒ enum(ins(x, S)) = enum(S) ;
x ∈ S = false =⇒ enum(ins(x, S)) = cons(x, enum(S)) ;
where : S : Set ; x, y : Nat ;

end SET-WITH-ENUM .

Figure 2: A variant of the specification of sets of natural numbers

satisfaction relation, hence behavioural consistency coincides with standard consistency. This
is the reason why we shall develop in the next section an approach based on observational se-
mantics, i.e. an approach where the satisfaction relation is redefined accordingly to the specified
observations.

5 Observational specifications

In this section we develop a new framework for observational specifications, the semantics of
which is based on a redefinition of the satisfaction relation. We will only consider flat or struc-
tured observational specifications, modular ones being dealt with in the next section.

As explained in the previous section, we want to reflect the following idea: some data struc-
tures are observable with respect to some observable sorts (e.g. lists are observable w.r.t. their
elements via terms such as car(L) or car(cdr(L)) etc.), but we need also to prevent from ob-
serving the results of some specific operations (e.g. if a list is obtained by enumeration of a set,
enum(S), it must not be observed; in particular, car(enum(S)), which denotes a value of an
observable sort, must nevertheless be non observable). This leads to the following idea: given a
specification SP , one defines the set of observable sorts SObs, and in addition one defines the set
of “operations allowing observations” which is a subset ΣObs of the signature of SP (e.g. ΣObs

11

can contain all the operations except enum).

5.1 Definitions

Let us first define the syntax of (flat) observational specifications.

Definition (Observational specifications):

• An observation Obs over a signature (S,Σ) is a couple (SObs,ΣObs) such that
SObs ⊆ S and ΣObs ⊆ Σ.

• An observational signature is a couple (Σ, Obs) such that Obs is an observation
over Σ.

• An axiom over a signature Σ is a sentence whose atoms are equalities (between
two Σ-terms of the same sort, with variables) and whose connectives belong to
{ ¬, ∧, ∨, ⇒ }. Every variable is implicitly universally quantified.

• An observational specification is a couple SP−Obs = (SP ,Obs) such that SP =
(S,Σ,Ax) is a classical specification (i.e. Ax is a set of axioms over Σ) and
Obs is an observation over the signature Σ.

• If Ax only contains equalities then SP−Obs is called equational . If Ax only
contains axioms of the form [(u1 = v1) ∧ . . . ∧ (un = vn) =⇒ (u = v)] then
SP−Obs is called positive conditional .

Example:
We have seen that, for the specification SET-WITH-ENUM given in Fig. 2, we need
to observe only the terms of sort Bool or Nat where the operation enum does not
occur. Thus, it is sufficient to declare SObs = {Bool,Nat} and ΣObs = Σ− {enum}
in order to obtain the required set of observable terms W already mentioned in
Section 4.

As usual, the notion of observable contexts is crucial for observability [24, 30, 29, 23, 22]:

Definition (Observable contexts):

• In general a context over a signature Σ is a Σ-term C with exactly one occur-
rence of one variable.

• Given a context C, its arity is (s′ → s), where s′ is the sort of the variable
occurring in C and s is the sort of (the term) C. s is also called the (target)
sort of C.

• Let (Σ, Obs) be an observational signature; the associated set of observable
contexts is the set CObs which contains all the contexts over the signature ΣObs

whose target sort belongs to SObs.

• For each observable sort s ∈ SObs, the context reduced to a variable of sort s
is called “the empty context” (of sort s).

Let us now define the semantics of (flat) observational specifications.

Definition (Observational semantics):
Let SP−Obs be an observational specification and Σ be its signature. Let M be a
Σ-algebra and let ax be an axiom of SP−Obs.

12

• Two elements a and b of M are observationally equal with respect to Obs if
and only if they have the same sort s and for all contexts C ∈ CObs of arity
s → s′, C(a) = C(b) in M (according to the usual equality of set theory).
In particular observational equality on observable sorts coincides with the set-
theoretic equality;7 for the non observable sorts, the observational equality
contains the set-theoretic equality, but there are also distinct values which are
observationally equal.

• The algebra M satisfies ax with respect to Obs means that for all substitutions
σ : TΣ(X) → M , σ(ax) holds in M according to the observational equality
(defined above) and the truth tables of the connectives.

• The algebra M satisfies SP−Obs means that it satisfies all the axioms of
SP−Obs with respect to Obs.

• The satisfaction of observational equalities is denoted by “|=Obs” and we write
“M |=Obs(a = b)”, “M |=Obs SP−Obs”. . .

Example:
It is not difficult to show that the realization of SET-WITH-ENUM by non redun-
dant lists described in the previous section satisfies the observational specification
given above. For instance:

• When x6∈S, enum(insert(x, S)) = cons(x, enum(S)) is satisfied because they
are equal (with respect to the set-theoretic equality) in our model; thus, they
are a fortiori observationally equal.

• insert(x, insert(y, S)) = insert(y, insert(x, S)) is observationally satisfied
(even when these two list realizations of sets are not equal with respect to the
set-theoretic equality) because all contexts involving enum do not belong to
CObs; here, all the observable contexts C in CObs have Set → Bool as arity and
the top symbol of C is necessarily “∈”.

Notation:
Given an observational specification SP−Obs, Mod(SP−Obs) is the full sub-category
of Mod(Σ) whose objects are the Σ-algebras satisfying SP−Obs.

The following results are trivial:

Fact-1:
Given an observational signature (Σ, Obs), Σ-morphisms preserve observational equal-
ities: for all µ : M → M ′ , if M |=Obs(a = b) then M ′|=Obs(µ(a) = µ(b)).

Fact-2:
Mod(SP) is equal to Mod(SP−Obs) when SObs = S (due to the empty contexts).

Fact-3:
If SP−Obs is equational then the usual category Mod(SP) is a full sub-category of
Mod(SP−Obs).

Fact-4:
More generally, if SP is an equational specification and if Obs1 ⊆ Obs2 then
Mod(SP−Obs2) is a full sub-category of Mod(SP−Obs1).

7because CObs always contains the empty contexts on observable sorts.

13

Notice that, from Fact-2, Fact-3 is a particular case of Fact-4. Moreover, the inclusions stated
in Fact-3 (hence in Fact-4) are often strict: there is often a model M with two elements a6=b
such that M |=Obs(a = b) .

Fact-5:
Fact-3, hence Fact-4, cannot be extended to non equational specifications. For
example let M be an algebra such that a6=b and c6=d with M |=Obs(a = b) and
M 6|=

Obs
(c = d). Then, M satisfies [(a = b) ⇒ (c = d)] in the classical sense

because the precondition is false, but it does not satisfy this axiom with respect to
Obs.

When flattened, our specification of SET-WITH-ENUM is an example where Mod(SP) only
contains algebras with a trivial Nat carrier (a singleton), but Mod(SP−Obs) contains, among
others, algebras where the Nat part is isomorphic to N.

5.2 Initiality results

As usual, initiality results can only be easily obtained for equational, or positive conditional,
specifications [38].

Theorem (Least congruence):
Let SP−Obs be a positive conditional observational specification and M be a
Σ-algebra. There exists a least congruence ≡ on M such that the quotient algebra
M/≡ satisfies SP−Obs.

Sketch of the proof: Let F be the family of all the congruences such that M/≡
satisfies SP−Obs. It is not empty because the trivial congruence τ defined by
(a τ b) ⇔ (a and b have the same sort) belongs to F. Let ≡ be the intersec-
tion of all the congruences in F; if ≡ still belongs to F then the theorem is proved.
Consequently, we simply have to prove that M/≡ satisfies (observationally) each
axiom of SP . This is not difficult, by applying the definitions.

The following corollary is simply obtained from the previous theorem with M = TΣ (as
in [20]):

Corollary (Initial object):
The category Mod(SP−Obs) has an initial object I = (TΣ/≡).

It may seem surprising that, regardless of several other works on observability [24, 27, 28],
we care about initial objects while they care about terminal ones. Indeed we believe that
any “collapse between values” reflects some implementation choice (each implementation
choice being intuitively reflected by some equation which induces new collapses). From this
viewpoint, “considering the least congruence” means “considering only the necessary imple-
mentation choices”; thus, the initial algebra can be considered as the most general realization.
More generally, when the initial algebra does not exist, minimal models can be considered as
realizations with “minimal implementation choices”. Moreover, Mod(SP−Obs) has always a
terminal object which is the trivial algebra. This algebra has clearly no interest. This is due
to the fact that, for the moment, our specifications are flat. Terminal algebras get interest
only when some enriched specifications are “protected”. We shall consider such hierarchical
constraints when observational semantics and the stratified loose approach will be integrated
together.

14

5.3 Structured observational specifications

The following proposition generalizes Fact-4 above.

Proposition:
Let SP−Obs1 and SP−Obs2 be two observational specifications such that SP−Obs1 ⊆
SP−Obs2. If SP−Obs1 is equational then the forgetful functor U from Mod(Σ2) to
Mod(Σ1) has the following property:
For all Σ2-algebras M satisfying SP−Obs2, the Σ1-algebra U(M) satisfies SP−Obs1.
Then U also denotes the forgetful functor from Mod(SP−Obs2) to Mod(SP−Obs1).

Proof: Results from CObs−1 ⊆ CObs−2 .

This proposition can be extended to positive conditional observational specifications whose ax-
ioms only contains equalities of observable sorts (in SObs) in the preconditions. Such an
extension is similar to some sufficient conditions used in [22, 6] for proof methods with observ-
ability.

Note that, from Fact-5 above, this proposition cannot in general be extended to a non equa-
tional specification SP−Obs1. Moreover, for the same reason, observational specifications do
not define an institution [19] because the Satisfaction Condition is not guaranteed in our frame-
work. Anyway, it seems clear that this counter-fact is intrinsic to the observability question:
there is no reasonable syntactical constraint which ensures that an enrichment does not add
new observations of old values. Consequently some axioms which were satisfied by the models
of a specification can become unsatisfied when new observations are added. This can only be
handled through modularity constraints, which cannot be easily reflected within the institution
framework (just because of the Satisfaction Condition). As explained later on, we shall reflect
these constraints owing to the stratified loose semantics.

Provided that the forgetful functor U exists (from Mod(SP−Obs2) to Mod(SP−Obs1)), and
that SP−Obs2 is positive conditional, U as a left adjoint, as stated in the following theorem:

Theorem (Free synthesis functor):
Let SP−Obs1 and SP−Obs2 be two observational specifications such that SP−Obs1 ⊆
SP−Obs2. If SP−Obs1 is equational and SP−Obs2 is positive conditional then
the forgetful functor U admits a left adjoint functor F∆ from Mod(SP−Obs1) to
Mod(SP−Obs2). In particular, there is a unit of adjunction which provides a canon-
ical Σ1-morphism from M to U(F∆(M)) for every algebra M in Mod(SP−Obs1).

Sketch of the proof: We use the existence of a minimal congruence exactly as
for the classical ADJ framework of algebraic specifications with positive conditional
axioms. For each M ∈ Mod(SP−Obs1) we consider the Σ2-algebra TΣ2

[M]. Let
≡ be the least congruence on TΣ2

[M] generated by the (observational) axioms of
SP−Obs2 and the fibers of the canonical morphism from TΣ1

[M] to M . The SP−Obs2

algebra TΣ2
[M]/≡ is by definition F∆(M). It is not difficult (but tedious!) to prove

that F∆ is compatible with the morphisms (thus it is a functor) and that there is
a natural bijection between HomSP−Obs1

(X,U(Y)) and HomSP−Obs2
(F∆(X), Y)

for all objects X ∈ Mod(SP−Obs1) and Y ∈ Mod(SP−Obs2) (which is the definition
of adjunction).

As usual, the existence of the unit of adjunction allows to define hierarchical consistency
within an initial framework [3].

15

Definition (Hierarchical consistency):
Let SP−Obs1 and SP−Obs2 be two observational specifications such that SP−Obs1 ⊆
SP−Obs2, SP−Obs1 is equational and SP−Obs2 is positive conditional. The observa-
tional specification SP−Obs2 is hierarchically consistent w.r.t. SP−Obs1 if and only
if the canonical morphism from I1 to U(I2) is a monomorphism (i.e. is injective in
our framework), where I1 (resp. I2) denotes the initial algebra of Mod(SP−Obs1)
(resp. Mod(SP−Obs2)).

Remember that left adjoint functors preserve initial models, thus I2 = F∆(I1).

Unfortunately, a similar definition of sufficient completeness (via the surjectivity of the
canonical morphism from I1 to U(I2)) is not adequate. For example, when considering our
SET-WITH-ENUM enrichment, this canonical morphism is not an epimorphism: in the initial
object I2, the terms enum(S) create new list values which are only observationally equal to
old list values. Thus, the following definition could be better:

Definition (Sufficient completeness):
Let SP−Obs1 and SP−Obs2 be two observational specifications such that SP−Obs1 ⊆
SP−Obs2, SP−Obs1 is equational and SP−Obs2 is positive conditional. The obser-
vational specification SP−Obs2 is sufficiently complete w.r.t. SP−Obs1 if and only if
the canonical morphism µ from I1 to U(I2) has the following property:
For all values v ∈ U(I2), there exists a value u ∈ I1 such that U(I2) |=Obs (v = µ(u)) .

This allows us to define persistency :

Definition (Persistency):
Let SP−Obs1 and SP−Obs2 be two observational specifications such that SP−Obs1 ⊆
SP−Obs2, SP−Obs1 is equational and SP−Obs2 is positive conditional. The ob-
servational specification SP−Obs2 is persistent w.r.t. SP−Obs1 if and only if it is
hierarchically consistent and sufficiently complete.

Of course, such an initial approach is rather restrictive. We must more or less restrict our-
selves to equational specifications in order to exploit the results stated in this section. However,
almost all the classical results build on the top of the ADJ group approach are then usable.
In particular, if a specification has been written following the “fair presentation” method then
it is sufficiently complete, and if there are no explicit equations between generators then it is
persistent [7].

Nevertheless, we believe that our definition of sufficient completeness is not fully satisfactory
because I2 does not protect the predefined data structure reflected by I1. Indeed, our realization
of sets by non redundant lists already described is a suitable model, while I2 is not a suitable
model. This means that the initial approach is not fully adequate: hierarchical constraints
should be substituted to sufficient completeness. More generally, structured specifications are
probably not powerful enough to capture the essence of observability. In other words, we believe
that observability issues intrinsically require a modular approach with semantic constraints.

6 Integrating observability and the stratified loose approach to-

gether: Modular observational specifications

In this section we show how we can obtain a satisfactory approach to software correctness by
embedding observability into the stratified loose approach defined in Section 3.

16

Remember that when we have defined the stratified loose semantics of modular specifica-
tions in Section 3, we have claimed that this definition was (more than) institution independent.
We will benefit here from this property, since considering modular observational specifications
(with the observational semantics defined in the previous section) instead of standard modular
specifications directly provides us with the adequate semantics we are looking for. To be more
precise, we have explained in the previous section that the observational semantics we have
introduced does not lead to an institution of observational specifications. However, since the
existence of forgetful functors from Σ2-algebras to Σ1-algebras is the only requirement really
needed for the stratified loose approach, there is no difficulty to translate the definition of the
stratified loose semantics for modular observational specifications.

Thus, combining the stratified loose semantics (for modularity) with the observational se-
mantics defined in Section 5 provides a framework where:

• The global correctness of some software w.r.t. its formal specification can be established
on a module per module basis.

• Local correctness is defined in a way flexible enough to cope with “non observable” differ-
ences between the properties of the software module and the properties specified by the
corresponding specification module.

The crucial point here is that the hierarchical constraints induced by the stratified loose se-
mantics will guarantee us that the composition of correct software modules will always result
in a correct software, and that the various modules of the specification can be implemented
independently of each other. Hence we do not have to worry about the somewhat problematic
features discussed at the end of Section 5. More precisely, the “no junk” and “no confusion”
properties inherent to the stratified loose approach (cf. Section 3) are still valid here, and there
is no need for the definitions of “sufficient completeness” and “hierarchical consistency” given in
the initial approach to structured observational specifications. Moreover, in the previous section
we have provided arguments for demonstrating that our observational semantics is powerful (i.e.
“flexible”) enough, since the counter example discussed at the end of Section 4 was solved in
an elegant way by an adequate redefinition of the satisfaction relation.

We believe that the framework developed in this paper provides a firm basis to establish
the correctness of some (modular) software w.r.t. its (modular, observational) specification.
However, if we really want to prove the correctness of some software, then we need adequate
deduction rules and proof techniques. This point is far beyond the scope of this paper, but we
would nevertheless discuss some proof related aspects. Remember that in Section 3 we have
introduced the restriction to finitely generated models (w.r.t. the operations specified as genera-
tors) to guarantee that “induction w.r.t. the generators” is a correct proof principle. An obvious
question is whether a similar restriction can be introduced in the framework of observational
specifications, and whether we will obtain a similar powerful proof principle.

As a first remark we should note that the restriction to finitely generated models (w.r.t. the
generators) is not adequate since such a restriction will be somehow contradictory with the aim
of the observational semantics we have developed so far. To illustrate this we will consider the
following example:

Example (Stacks implemented by arrays):
Let us consider an observational specification of stacks of natural numbers where

17

SObs is the singleton {Nat} and ΣObs is equal to Σ; the generators being obviously
emptystack and push for the sort Stack . Of course, we would like to consider a model
which implements stacks by means of arrays as an observationally correct model:
stack values are couples (a, h) where a is an array and h is the height of the stack;
emptystack is realized by some initial array a = init and h = 0, push records its
element at range h in a and increments h, pop simply decreases h without modifying
a, etc.

Let us assume that the initial array init uniformly contains 0 for all indices. Then, all
stacks values obtained via the generators emptystack and push satisfy the following
property: for all indices i ≥ h, a[i] = 0 . But this property is not satisfied for the
stack pop(push(1, emptystack)) (because h = 0 and a[0] = 1 for this stack value).
Consequently this model is not finitely generated w.r.t. the generators emptystack
and push.

Nevertheless, one should remark that even though pop(push(1, emptystack)) is not
equal to emptystack according to the set-theoretic equality in our model, it is ob-
servationally equal to emptystack .

Thus, it is clear that we must allow values that are not denotable by a composition of
generators; but we can still obtain the desired proof principle by requiring for each value to be
observationally equal to a value denotable by a composition of generators. This leads to the
following definition.

Definition (Observational restriction to generators):
Let SP−Obs be a modular observational specification. Let Ω ⊆ Σ be the set of
generators declared in SP−Obs. A model M of SP−Obs is observationally finitely
generated w.r.t. Ω if and only if for every value m in M there exists an Ω-term t
such that M |=Obs (m = t) .

As a second remark, we would like to point out that refining the stratified loose semantics
with the “observational restriction to generators” constraint has at least two advantages. It
simplifies the proof principles and moreover, it has an important consequence on the “specifi-
cation style”: some operations can be specified in a really abstract manner, as demonstrated in
the following toy example:

Example (pickout in sets):
Let us consider a specification of sets with a pickout operation which is supposed to
delete one of the elements of a set. We do not want to specify which element has
to be deleted. This specification module is described in Fig. 3.

For sake of simplicity, let us assume that the elements are the boolean values. The
models that we clearly would like to accept are the ones which contain four set
values up to observational equality: ∅, {true}, {false} and {true, false} . Two
possible behaviours of pickout are acceptable: pickout({true, false}) = {true} or
pickout({true, false}) = {false}.8 As a matter of fact, we exactly get these models
when we consider the semantic constraint of “observational restriction to genera-
tors”. If this constraint is not required, then we get exotic models such as:

• The set carrier contains five values: ∅, {true}, {false}, {true, false} and a
strange set {true+false} .

8These equalities are only observational ones.

18

spec : SET-WITH-PICKOUT ;
use : ELEM, NAT, BOOL ;

sort : Set ;
generated by :

∅ : −→ Set ;
ins: Elem Set −→ Set ;

operations :
∈ : Elem Set −→ Bool ;

card : Set −→ Nat ;
pickout : Set −→ Set ;

axioms :
ins(x, ins(x, S)) = ins(x, S) ;
ins(x, ins(y, S)) = ins(y, ins(x, S)) ;
x ∈ ∅ = false ;
x ∈ ins(x, S) = true ;
x 6= y =⇒ x ∈ ins(y, S) = x ∈ S ;
card(∅) = 0 ;
x ∈ S = false =⇒ card(ins(x, S)) = succ(card(S)) ;
pickout(∅) = ∅ ;
S 6= ∅ =⇒ card(pickout(S)) = pred(card(S)) ;
x ∈ pickout(S) = true =⇒ x ∈ S = true ;
where : S : Set ; x, y : Elem ;

end SET-WITH-PICKOUT .

Figure 3: Yet another specification of sets

• ins is a constant function on {true+false} which always returns {true+false}
itself and it works as usual on the other sets.

• ∈ is the constant function true on {true+false} and it works as usual on
the other sets.

• card({true+false}) = 1 and the cardinal of the other sets is the usual one.

• pickout({true, false}) = {true+false} and pickout on all other sets returns
the empty set.

This model clearly satisfies the specification. However {true+false} is not obser-
vationally equal to a standard set because there are two distinct values (true and
false) which are members of it, but its cardinal is 1.

This example, together with the remove and div examples given in Section 3, show that
semantic constraints are fundamental in order to reach a specification style which is really ab-
stract.

Obviously, the definition of correct proof principles for modular observational specifications
requires further investigation. Some combination of “observational induction w.r.t. the genera-
tors” and of “context induction” à la Hennicker [22] could prove adequate.

19

As a last remark, we would like to remind that, as for standard modular specifications,
the hierarchical inconsistency of a given observational specification module can result either
from “inconsistent axioms” or from the introduction of “new” observations on “old” sorts.
However, in the framework of modular observational specifications, “inconsistent axioms” and
“adding new observations on old sorts” should be interpreted with respect to the observational
satisfaction relation and the specified observations ∆Obs. It is clear that the “flexibility”
induced by observability will prove useful for hierarchical consistency issues as well. Moreover,
if it is obvious that the observations should be carefully designed, this task is made easier since
they are explicitly specified.

7 Specifying adequate observations

In this section we would like to hark back to our claim that the observational semantics defined
in Section 5 is powerful (“flexible”) enough, and to the role of those operations who prevent
some observations (such as enum).

Our SET-WITH-ENUM example (cf. Fig. 2) was used to justify the need for an obser-
vational semantics. However, one could argue that this example was a bit ad hoc, since the
purpose of the enum operation was rather mysterious: what could be the use of an operation
which never provides observable results?

In general, such operations correspond to “internal services” used to define some other oper-
ations. For instance, assume that the LIST module provides a sum operation, which computes
the sum of all the natural numbers contained in a list. Assume moreover that this sum opera-
tion belongs to ΣObs. Then we can compute the sum of all the natural numbers contained in a
set by the following term: sum(enum(S)).

Well, things are not that easy: the term sum(enum(S)) is not observable. Nevertheless,
this apparent difficulty can be easily solved by defining a new operation sigma : Set →
Nat, in the SET-WITH-ENUM specification module, with the following axiom: sigma(S) =
sum(enum(S)). It is then sufficient to specify that sigma belongs to ΣObs and we are done.
Note that the resulting specification module remains hierarchically consistent, since the sum
operation on lists is associative and commutative.

One could believe that the need for a new operation sigma exhibits some weakness of our
approach. On the contrary, our point is that preventing from observing the results of some
operations can be considered as some kind of a very flexible visibility control mechanism. More
precisely, these operations are “internal services” who can be used to define more complex
computations, and as such they are available through the whole specification. However, a
“client” of any realization of the specification is not allowed to directly invoke these internal
services (e.g. by the term sum(enum(S))), but should instead invoke some explicitly made
available service (e.g. sigma).

8 Conclusion

We have investigated how far modularity and observability issues can contribute to a better un-
derstanding of software correctness. We have detailed the impact of modularity on the semantics
of algebraic specifications. We have shown that, with the stratified loose semantics, software

20

correctness can be established on a module per module basis. Then we have discussed observ-
ability issues. In particular, we have explained why a behavioural semantics of observability
(based on an equivalence relation between algebras) is not fully satisfactory. Therefore, we have
introduced an observational semantics (based on a redefinition of the satisfaction relation) where
sort observation is refined by specifying that some operations do not allow observations. Then
we have integrated the stratified loose approach and our observational semantics together. As
a result, we have obtained a framework (modular observational specifications) where the defini-
tion of software correctness is adequate, i.e. fits with actual software correctness. Moreover, we
have shown that, with modular observational specifications, we reach a specification style which
is really abstract. Our definition of software correctness is a first step towards putting software
correctness proofs in practice. A promising area for further investigations is the development
of (modular) proof methods on top of our approach.

Acknowledgement: We would like to thank Teodor Knapik for numerous fruitful
discussions. This work is partially supported by C.N.R.S. GRECO de Programma-
tion and E.E.C. Working Group COMPASS.

References

[1] E. Astesiano and M. Wirsing. An introduction to ASL. In Proc. of the IFIP WG2.1
Working Conference on Program Specifications and Transformations, 1986.

[2] F.L. Bauer et al. The Munich project CIP. Volume I: The wide spectrum language CIP-L.
Springer-Verlag L.N.C.S. 183, 1985.

[3] G. Bernot. Good functors. . . are those preserving philosophy. In Proc. of the Summer
Conference on Category Theory and Computer Science, pages 182–195, Springer-Verlag
L.N.C.S. 283, 1987.

[4] G. Bernot, M. Bidoit, and C. Choppy. Abstract implementations and correctness proofs.
In Proc. of the 3rd Symposium on Theoretical Aspects of Computer Science (STACS),
pages 236–251, Springer-Verlag L.N.C.S. 210, 1986.

[5] G. Bernot, M. Bidoit, and T. Knapik. Observational approaches in algebraic specifications:
A comparative study. Technical Report 6, LIENS, 1991.

[6] G. Bernot, M.-C. Gaudel, and B. Marre. Software testing based on formal specifications:
A theory and a tool. Software Engineering Journal, 1991.

[7] M. Bidoit. Algebraic data types: Structured specifications and fair presentations. In
Proc. of the AFCET Symposium on Mathematics for Computer Science, 1982.

[8] M. Bidoit. Development of modular specifications by stepwise refinements using the Pluss
specification language. In Proc. of the Unified Computation Laboratory, Oxford University
Press, 1991.

[9] M. Bidoit. Pluss, un langage pour le développement de spécifications algébriques modu-
laires. Thèse d’Etat, Université Paris-Sud, 1989.

[10] M. Bidoit. The stratified loose approach: A generalization of initial and loose semantics.
In Recent Trends in Data Type Specification, Selected Papers of the 5th Workshop on
Specifications of Abstract Data Types, pages 1–22, Springer-Verlag L.N.C.S. 332, 1987.

21

[11] M. Bidoit, M.-C. Gaudel, and A. Mauboussin. How to make algebraic specifications more
understandable? an experiment with the Pluss specification language. Science of Computer
Programming, 12(1), 1989.

[12] H. Ehrig, W. Fey, and H. Hansen. ACT ONE: an algebraic specification language with two
levels of semantics. Technical Report 83–03, TU Berlin FB 20, 1983.

[13] H. Ehrig, H.-J. Kreowski, B. Mahr, and P. Padawitz. Algebraic implementation of abstract
data types. Theoretical Computer Science, 20:209–263, 1982.

[14] H. Ehrig and B. Mahr. Fundamentals of algebraic specification 1. Equations and initial
semantics. Volume 6 of EATCS Monographs on Theoretical Computer Science, Springer-
Verlag, 1985.

[15] K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2. In
Proc. of the 12th ACM Symposium on Principles of Programming Languages (POPL),
pages 52–66, 1985.

[16] H. Ganzinger. Parameterized specifications: Parameter passing and implementation with
respect to observability. ACM Transactions on Programming Languages and Systems,
5(3):318–354, 1983.

[17] M.-C. Gaudel and T. Moineau. A theory of software reusability. In Proc. of the European
Symposium on Programming (ESOP), pages 115–130, Springer-Verlag L.N.C.S. 300, 1988.

[18] V. Girratana, F. Gimona, and U. Montanari. Observability concepts in abstract data
type specification. In Proc. of Mathematical Foundations of Computer Science (MFCS),
pages 576–587, Springer-Verlag L.N.C.S. 45, 1976.

[19] J.A. Goguen and R.M. Burstall. Introducing institutions. In Proc. of the Workshop on
Logics of Programming, pages 221–256, Springer-Verlag L.N.C.S. 164, 1984.

[20] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial approach to the specification,
correctness, and implementation of abstract data types. Volume 4 of Current Trends in
Programming Methodology, Prentice Hall, 1978.

[21] J.V. Guttag, J.J. Horning, and J.M. Wing. Larch in five easy pieces. Technical Report 5,
Digital Systems Research Center, 1985.

[22] R. Hennicker. Context induction: A proof principle for behavioural abstractions and alge-
braic implementations. Technical Report MIP–9001, Fakultät für Mathematik und Infor-
matik, Universität Passau, 1990.

[23] R. Hennicker. Implementation of parameterized observational specifications. In Proc. of
TAPSOFT, pages 290–305, Springer-Verlag L.N.C.S. 351, 1989.

[24] S. Kamin. Final data types and their specification. ACM Transactions on Programming
Languages and Systems, 5(1):97–123, 1983.

[25] S. Mac Lane. Categories for the working mathematician. Volume 5 of Graduate Texts in
Mathematics, Springer-Verlag, 1971.

[26] J. Meseguer and J.A. Goguen. Initiality, induction and computability, pages 459–540.
Algebraic Methods in Semantics, Cambridge University Press, 1985.

22

[27] L.S. Moss, J. Meseguer, and J.A. Goguen. Final algebras, cosemicomputable algebras and
degrees of unsolvability. In Proc. of Category Theory and Computer Science, pages 158–181,
Springer-Verlag L.N.C.S. 283, 1987.

[28] L.S. Moss and S.R. Thate. Generalization of final algebra semantics by relativization.
In Proc. of the 5th Mathematical Foundations of Programming Semantics International
Conference, pages 284–300, Springer-Verlag L.N.C.S. 442, 1989.

[29] P. Nivela and F. Orejas. Initial behaviour semantics for algebraic specification. In Recent
Trends in Data Type Specification, Selected Papers of the 5th Workshop on Specification of
Abstract Data Types, pages 184–207, Springer-Verlag L.N.C.S. 332, 1987.

[30] H. Reichel. Behavioural validity of conditional equations in abstract data types. In Con-
tributions to General Algebra 3, Proc. of the Vienna Conference, 1984.

[31] D. Sannella and A. Tarlecki. On observational equivalence and algebraic specification. In
Proc. of TAPSOFT, pages 308–322, Springer-Verlag L.N.C.S. 185, 1985.

[32] D. Sannella and A. Tarlecki. Toward formal development of programs from algebraic
specification revisited. Acta Informatica, (25):233–281, 1988.

[33] D.T. Sannella and A. Tarlecki. Building specifications in an arbitrary institution. In Proc.
of the International Symposium on Semantics of Data Types, Springer-Verlag L.N.C.S. 173,
1984.

[34] Oliver Schoett. Data abstraction and the correctness of modular programming. PhD thesis,
University of Edinburg, 1987.

[35] N.W.P. van Dieppen. Implementation of modular algebraic specifications. In Proc. of
the European Symposium on Programming (ESOP), pages 64–78, Springer-Verlag L.N.C.S.
300, 1988.

[36] M. Wand. Final algebra semantics and data type extensions. Journal of Computer and
System Sciences, 19:27–44, 1979.

[37] M. Wirsing. Structured Algebraic specifications: A kernel language. PhD thesis, Techn.
Univ. Munchen, 1983.

[38] M. Wirsing and M. Broy. Abstract data types as lattices of finitely generated models. In
Proc. of the 9th Symposium on Mathematical Foundations of Computer Science (MFCS),
1980.

23

